Definitions and Representations
stochastic process:$X=\{X_t:t\in T\}$
- $X_t$: the state of the process at time $t$.
- discrete space process: $X_t$ assumes values from a countably infinite set.
finite process: $X_t$ assumes values from a finite set. - discrete time process: $t$ is a countably infinite set.
Markov chain: $X_0,X_1,X_2,…$ is a Markov chain if
$$
\begin{aligned}
Pr(X_t=a_t|X_{t-1}=a_{t-1},X_{t-2}=a_{t-2},...,X_0=a_0)&=Pr(X_t=a_t|X_{t-1}=a_{t-1})\\
&= P_{a_{t-1},a_t}
\end{aligned}
$$
Assume $P_{i,j}=Pr(X_t=j|X_{t-1}=i)$.
transition matrix:
$$
P=\left[
\begin{matrix}
P_{0,0} & P_{0,1} & \cdots & P_{0,j} & \cdots \\
P_{1,0} & P_{1,1} & \cdots & P_{1,j} & \cdots\\
\vdots & \vdots & \ddots & \vdots &\ddots\\
P_{i,0} & P_{i,1} & \cdots & P_{i,j} &\cdots \\
\vdots & \vdots & \ddots & \vdots &\ddots
\end{matrix}
\right]
$$
Definitions and Representations