Stirling's Formula及证明
证明:
$$
ln(n!)=\sum_{j=1}^n\ln{j}
$$
用积分近似:
$$
\sum_{j=1}^n\ln j\approx\int_{1}^n\ln{x}\ dx=n\ln{n}-n+1
$$
如果用误差更小一点的积分梯形近似:
$$
\ln(n!)-\frac{1}{2}\ln{n}\approx\int_1^n \ln{x}dx=n\ln{n}-n+1
$$
近似误差可由Euler-Maclaurin公式得到:
$$
\begin{aligned}
\ln{(n!)}-\frac{1}{2}\ln{n} &=\frac{1}{2}\ln1+\ln2+\dots+\frac{1}{2}\ln n\\
&=n\ln n-n+1+\sum_{k=2}^m\frac{(-1)^kB_k}{k(k-1)}\Big(\frac{1}{n^{k-1}}-1\Big)+R_{m,n}
\end{aligned}
$$
其中$B_k$是伯努利数,$R_{m,n}$是Euler-Maclaurin公式中的余数项
对表达式两端取极限并定义$y$为极限值,可以得到,
$$
\begin{aligned}
y =\lim_{n\rightarrow\infty}(\ln(n!)-n\ln n+n-\frac{1}{2}\ln n) =1-\sum_{k=2}^m\frac{(-1)^kB_k}{k(k-1)}+\lim_{n\rightarrow\infty}R_{m,n}
\end{aligned}
$$
因为$R_{m,n}$满足
$$
\begin{aligned}
R_{m,n}=\lim_{n\rightarrow\infty}R_{m,n}+O\Big(\frac{1}{n^m}\Big)
\end{aligned}
$$
基于以上准备可以完成推导:
$$
\begin{aligned}
\ln(n!)-n\ln n+n-\frac{1}{2}\ln n=\Big(1-\sum_{k=2}^m\frac{(-1)^kB_k}{k(k-1)}\Big)+\Big(\sum_{k=2}^m\frac{(-1)^kB_k}{k(k-1)n^{k-1}})+R_{m,n}
\end{aligned}
$$
$$
\begin{aligned}
右边&=(y-\lim_{n\rightarrow R_{m,n}})+\Big(\sum_{k=2}^m\frac{(-1)^kB_k}{k(k-1)n^{k-1}}+R_{m,n}\Big)\\
&=y+\Big(\sum_{k=2}^m\frac{(-1)^kB_k}{k(k-1)n^{k-1}})+(R_{m,n}-\lim_{n\rightarrow\infty }R_{m,n})\\
&=y+\sum_{k=2}^m\frac{(-1)^kB_k}{k(k-1)n^{k-1}}+O\Big(\frac{1}{n^m}\Big)
\end{aligned}
$$
于是得到近似公式
$$
\begin{aligned}
\ln (n!)=n\ln{\Big(\frac{n}{e}\Big)}+\frac{1}{2}\ln{n}+y+\sum_{k=2}^m\frac{(-1)^kB_k}{k(k-1)n^{k-1}}
\end{aligned}
$$
取$m=1$得到
$$
\begin{aligned}
n!=e^y\sqrt n\Big(\frac{n}{e}\Big)^n\Big(1+O\Big(\frac{1}{n}\Big)\Big)
\end{aligned}
$$
由于$e^y=\sqrt{2\pi}$,得到Stirling’ formula
$$
\begin{aligned}
n!=\sqrt{2\pi n}\Big(\frac{n}{e}\Big)\Big(1+O\Big(\frac{1}{n}\Big)\Big)
\end{aligned}
$$
Stirling's Formula及证明